
 

An exact solution for the random close
packing problem in 2D and 3D
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A random packing of spheres in 3D. Credit: Alessio Zaccone

Imagine placing oranges or tennis balls into a rigid container. How can
the balls be arranged such that they occupy the largest volume fraction of
the container, otherwise known as the largest packing density? This is
one of the oldest problems in discrete geometry, which has many
applications in physics, since atoms in condensed matter can be
schematized like rigid balls to rationalize the atomic structure of solids
and liquids. The answer to this problem will be different depending on
whether the balls are arranged in a fully ordered way, thus each
occupying a well-defined position in a crystalline lattice, or if they are
instead randomly placed.

An old problem in mathematics

The great German mathematician David Hilbert, at the start of 20th
century, inserted this problem in his famous list of unsolved fundamental
problems in math (this is indeed part of Hilbert's 18th problem). The
problem has, therefore, two "answers," depending on whether the
spheres are arranged in an orderly way (like atoms in a crystal lattice) or
in a completely random, disordered way. The first part of the problem
got an answer when Kepler suggested that spheres arranged in a face-
centered cubic lattice provide the densest packing possible in nature.
Gauss, in the 19th century, calculated analytically the corresponding
volume fraction (about 0.74), and more recently, the American
mathematician Thomas Hales demonstrated in the 1990s via formal
methods that in the ordered case, the Kepler conjecture is indeed
verified rigorously.

The surprising power of analytical probability and
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statistics methods

However, when the balls are placed at random in a container, the
calculation of the densest packing fraction is not trivial, as there is a
huge number of random configurations in which the balls can be
arranged. So far, only computers or experiments have been able to
provide quantitative estimates of the occupied volume for each
configuration. Previous mathematical approaches are mostly heuristic, in
the sense that they rely on some particular geometric construction and
assumptions (e.g., considering tetrahedra of particles as the main blocks
of the packing or analyzing the voids in between the particles).

Now, this problem has been solved mathematically without the aid of a
computer in a simple way—for the first time, in a purely statistical way.
This was achieved by accounting for the statistical correlations between
particles due to their mutual repulsion. This new solution is, to some
extent, surprising. It is based on a simple statistical-probabilistic method
used in the atomic theory of liquids to compute the probability to have a
certain number of spheres within a given distance from a sphere at the
center of the frame upon increasing the density of the spheres. No
further assumptions are used besides the physically justified one about
the impenetrability of the spheres.

Concluding remarks

For a long time, scientists believed that a statistical solution to this
problem was impossible given the complexity of the many-body
interactions among the many spheres that repel at contact. Instead, this
solution has produced values in good agreement with experimental data
in both 3D and 2D. Furthermore, the method opens up new avenues for
our understanding of complex physical systems dominated by
randomness, from the structure-property relation in liquids and glasses
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(e.g., how can we predict viscosity or rigidity of materials based on their
random structure?) to randomness of both small-scale and large-scale
structures in the universe. Finally, these new estimates of random close-
packing in both 2D and 3D lie close to the upper limits of the values
typically seen in experiments and simulations. It is to be ascertained in
future work if these values do coincide with the densest arrangements
that the packing can reach without having to "promote" local ordering of
the spheres.

This story is part of Science X Dialog, where researchers can report
findings from their published research articles. Visit this page for
information about ScienceX Dialog and how to participate.
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anharmonic theory of phonon-mediated superconductivity, which
extends the BCS theory to materials with anharmonicity, disorder and to
high-pressure materials.
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