Scalable engineering of 2-D porous carbons from solid-state mechanical grinding/Ball milling
December 21st, 2018 • Alice Nico
Due to the unique physical and chemical characteristics, such as good electrical conductivity, low weight, large surface areas, high electrochemical activity, and facile doping of heteroatoms or inorganic species, there are increasing demands of fabricating 2-D porous carbon for lithium-ion batteries, supercapacitors, electrochemical catalysts and many other emerged applications in energy storage and conversion. "Such 2-D carbons show sub-nanometer to nanometer thickness, which is highly important for electrochemical applications, the entire carbon framework of these 2-D nanomaterials is exposed to the electrolyte and all the active sites can take part in the reactions" says Dr. Chong Cheng, an AvH research fellow and expert in carbon nanomaterials at Department of Chemistry in Freie Universität Berlin (Germany).
Hence, developing 2-D carbon nanomaterials with controllable pore sizes, facile heteroatoms/inorganic species doping, and low-cost shows urgent importance in current material science and global clean energy researches. "However, the currently established synthetic processes for fabricating 2-D porous carbons are either quite complex or enormous time/energy consuming, the synthesis of these materials in large scale seems nearly impossible" says Dr. Shuang Li, an electrocatalysts researcher and carbon nanomaterials specialist in Technische Universität Berlin (Germany). She further comments that "in current carbon nanomaterial science, it is indeed still a major challenge to develop industrial affordable protocols on fabricating 2-D porous carbons with controllable morphology and electrochemical activities."
Inspired by the recent advancements in metal-organic coordination chemistry, recently, the team from group of Prof. Arne Thomas, Technical University of Berlin, for the first time, has developed a fast, scalable, and eco-friendly active-salt-templating (AST) strategy to engineer different types of 2-D porous carbons, and the fabrication process is assisted from solid-state mechanical grinding or ball milling techniques. This novel and promising new technology has been published in Angewandte Chemie and Advanced Materials.
Distinct from previous technologies used to construct 2-D porous carbons, this novel fabrication strategy shows obvious advantages for large-scale production, especially its fast and eco-friendly material processing methods by using solid-state mechanical grinding or ball milling. In this technique, the iron salt can interact with diverse organic precursors to form a layered organic-inorganic hybrid structure after mechanical grinding or ball milling. Then, this layered structure is preserved during the carbonization process and controls the final carbon morphology to yield 2-D porous carbons with a few nanometer thicknesses. Furthermore, the in situ and confined growth of heteroatoms or nanocrystallites can be guaranteed by the strong metal-organic coordination structures, which thus provide a novel and simple strategy to synthesize diverse heteroatoms or nanocrystallites doped electrochemical active carbon materials.
"By using this technology, we have fabricated a 2-D Fe-N co-doped microporous carbon, which exhibits exceptional performance for the oxygen reduction reaction. The activity of our catalyst can even exceed the performance of the state-of-art Pt-carbon catalyst, which endows this carbon material promising application potential in fuel cells or metal air batteries" says Shuang Li. She also emphasizes that "to further introduce mesoporous structure into these 2-D microporous carbon, we have improved this material processing method by adding different silica nanoparticles as hard templates, then, we can facilely fabricate 2-D hierarchically meso-/microporous carbon with confined doping of multiple heteroatoms or nanocrystallites in carbon frameworks."
"Our discovery by using active-salt-templating method and solid-state mechanical grinding or ball milling techniques may create a new industrial affordable and adaptable pathway for scalable and controllable synthesis of diverse kinds of micro-/nano-structured carbon materials" said the researchers. The next steps for the group are to use this technology to produce more rationally designed heteroatoms/nanocrystallites doped porous carbons for many other new energy storage and conversion applications, such as sodium-ion batteries, water splitting, and catalysts for CO2 and N2 reduction, Shuang Li said.
More information:
Title: Active Salt/Silica–Templated 2D Mesoporous FeCo‐Nx‐Carbon as Bifunctional Oxygen Electrodes for Zinc–Air Batteries
S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Angew. Chem. Int. Ed. 2018, 57, 1856. doi.org/10.1002/anie.201710852.
Title: 2D Porous Carbons prepared from Layered Organic–Inorganic Hybrids and their Use as Oxygen‐Reduction Electrocatalysts
S. Li, C. Cheng, H.W. Liang, X.L. Feng, A. Thomas, Adv. Mater. 2017, 29, 1700707. doi.org/10.1002/adma.201700707
Provided by Technische Universität Berlin