Secure, tap-proof communication enabled by quantum technology

December 7th, 2023 • Annette Siller
Quantum technology enables the absolutely tap-proof transfer of data. Credit: Prof Alexander Kubanek, University of Ulm

Secure communication, impervious to interception, is achieved through the application of quantum mechanics in a groundbreaking technology. This method facilitates not only tap-proof communication but also the tamper-proof transfer of diverse data. It seamlessly integrates into existing microchip and processor manufacturing processes, offering a cost-effective solution.

In conventional communication, data is generated and encrypted using mathematical algorithms. However, the vulnerability of this encryption lies in the decryptable nature of the underlying algorithm, as evidenced by numerous global cyberattacks, exposing weaknesses in data security. In contrast, the use of quantum objects for data transfer shifts the focus of data security to the inherent physical properties of these objects.

In a project supported by the Baden-Wuerttemberg Foundation, researchers at the University of Ulm have devised a method to establish communication links utilizing quantum objects. The technique, developed by Prof. Dr. Alexander Kubanek's team, employs two identical defect centers within nanodiamonds as building blocks for quantum mechanical entanglement, forming the foundation for a quantum data network.

This approach leverages the unique characteristics of as-yet-undiscovered quantum states, which resist copying or measurement without disruption. Quantum state disturbances are readily identified as transmission errors, thwarting potential eavesdropping attacks.

Proof of a coherent single photon source. Credit: Prof Alexander Kubanek, University of Ulm

In the process of quantum entanglement, individual photons—particles of light—are utilized from the defect centers in nanodiamonds. The maneuverability of these nanoparticles allows the method to be theoretically integrated into existing microchip production processes.

This method developed by Prof Kubanek establishes communication links rooted in the principles of physics rather than relying solely on mathematical calculations for security. The current objective is to advance this tamper-proof technology toward market readiness through a startup initiative.

Provided by Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH