This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

RS-25 engine testing blazes forward for NASA's space launch system

January 12th, 2015 Rachel Kraft
RS-25 engine testing blazes forward for NASA's space launch system
The RS-25 engine fires up for a 500-second test Jan. 9 at NASA's Stennis Space Center near Bay St. Louis, Mississippi.

The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi.

The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars.  

"We've made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series," said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles."

The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture.

"This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center's A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing."

The RS-25 engine that will drive NASA's new rocket, the Space Launch System, to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA TV

Testing will resume in April after upgrades are completed on the high pressure industrial water system, which provides cool water for the test facility during a hot fire test. Eight tests, totaling 3,500 seconds, are planned for the current development engine. Another development engine later will undergo 10 tests, totaling 4,500 seconds. The second test series includes the first test of new flight controllers, known as green running.

The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is upgraded, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.

RS-25 engine testing blazes forward for NASA's space launch system
A close-up view from the test stand. Credit: NASA

More information:
For more information on the RS-25, go to: go.nasa.gov/1I2ZMx3

Provided by NASA

Citation: RS-25 engine testing blazes forward for NASA's space launch system (2015, January 12) retrieved 26 January 2025 from https://sciencex.com/wire-news/182504830/rs-25-engine-testing-blazes-forward-for-nasas-space-launch-syste.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.