This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

Pitt engineers receive grant to develop fast computational modeling for 3-D printing

August 16th, 2016
Pitt engineers receive grant to develop fast computational modeling for 3-D printing
The supporting structures failed for these four fatigue test bars. The stress buildup in the longer length of the bars created an excessive curling force on the outer edges of the support structures, resulting in fracture. Credit: Albert To/Swanson School of Engineering

As additive manufacturing (AM), or 3D printing, becomes more commonplace, researchers and industry are seeking to mitigate the distortions and stresses inherent in fabricating these complex geometries. Researchers at the University of Pittsburgh's Swanson School of Engineering and Pittsburgh-based manufacturer Aerotech, Inc. recently received a $350,000 grant from the National Science Foundation to address these design issues by developing new, fast computational methods for additive manufacturing.

The proposal, "Novel Computational Approaches to Address Key Design Optimization Issues for Metal Additive Manufacturing," is a three-year, $350,000 GOALI (Grant Opportunities for Academic Liaison with Industry) grant funded by the NSF's Division of Civil, Mechanical and Manufacturing Innovation (CMMI). The team, based in the Swanson School's Department of Mechanical Engineering and Materials Science, includes Associate Professor and Principal Investigator Albert To; and co-PIs Assistant Professor Sangyeop Lee and Adjunct Associate Professor Stephen Ludwick. Aerotech, Inc. will partner with Pitt by providing designs and evaluation. The group's research is an extension of previous funding from the Research for Advanced Manufacturing in Pennsylvania program (RAMP).

"The ability to create geometrically complex shapes through additive manufacturing is both a tremendous benefit and a significant challenge," Dr. To said. "Optimizing the design to compensate for residual distortion, residual stress, and post-machining requirements can take days or even months for these parts."

To mitigate these challenges, Dr. To and his group will first develop a simple yet accurate thermomechanics model to predict residual stress and distortion in an AM part. Next, they will develop a topology optimization method capable of generating designs with both free-form surfaces and machining-friendly surfaces. According to Dr. To, this will compensate for the geometric complexity and organic nature of AM parts, which contribute to their potential for distortion and post-machining problems. These approaches will then be developed and tested using real parts and design requirements provided by Aerotech.

Aerotech's Stephen Ludwick expects that "the tools developed through this collaboration will allow us to produce the complex parts enabled by additive manufacturing with a minimum of trial-and-error and rework. This in turn allows us to design stiff and lightweight components in our high-speed motion systems which are also used by other companies engaged in advanced manufacturing."

"By utilizing advanced mechanic theory, we hope to reduce design optimization of additive manufactured parts to minutes, thereby reducing the time of design life cycle," Dr. To said. "This would lead to wider adoption of AM by the U.S. manufacturing base and further improve the economic sustainability of the additive manufacturing process."

Provided by University of Pittsburgh

Citation: Pitt engineers receive grant to develop fast computational modeling for 3-D printing (2016, August 16) retrieved 30 September 2025 from https://sciencex.com/wire-news/232812091/pitt-engineers-receive-grant-to-develop-fast-computational-model.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.