Molecules rev up for world’s tiniest race
Come October, six of the world's most advanced vehicles will race for glory over a track made of gold. Only you won't be able to see the groundbreaking event, because each competitor will be just nanometres in size.
This is the NanoCar Race, and it is being held at the materials lab CEMES at the National Center for Scientific Research (CNRS) in Toulouse, France. The idea is to encourage the development of technology made of single atoms and molecules that could one day revolutionise areas such as electronics.
'It's not about molecular vehicles per se, it's about single-molecule mechanics and the way you can miniaturise gears, motors and so on to the atomic scale,' said molecular scientist Dr Christian Joachim of CEMES.
The nano cars consist of complex single molecules designed by teams of chemists from all over the world. Though invisible to the naked eye, these molecules appear on the atomic scale like a ragbag line-up from Wacky Races – some with wheels, some with wings and some with paddles for propulsion.
Once on the gold nano-track, the vehicles will be spurred into motion by a scanning tunnelling microscope (STM), a tool with a very fine probe that blows single electrons. In fact, the STM at CEMES has four tips in order to drive up to four contenders simultaneously – one of only two in the world with such a capability.
Electron power
The electrons from the STM pass through the molecular cars, imparting some energy as they do so. This energy is enough to jolt the molecules into a slightly different configuration – for example, turning the parts of the molecules that resemble wheels – so that they crawl along.
Dr Joachim believes it could take a day or longer for the cars to make it around the track, which has two corners, three straights and a total distance of 100 nanometres. That's about the same length as a flu virus.
It is a 'bit of fun' said Dr Joachim, but it is also a way of challenging scientists to improve their control of single atoms and molecules on surfaces. That in turn will help them to develop practical technology, such as molecular electronics, in which calculations are performed either by channeling an electric current in single molecules or by making them perform intricate 'clockwork' mechanisms.
Dr André Gourdon, also from CEMES, says that one of the benefits of designing electronics from the bottom up with single molecules is the regularity of the components. This is unlike conventional electronics, in which the conventional top-down fabrication process can leave sizeable defects.
Read on on Horizon Magazine.
More information:
editorial [at] horizon [dash] magazine [dot] eu
Horizon brings you the latest news and features about thought-provoking science and innovative research projects funded by the EU. Our articles are written by independent science journalists and are designed to appeal to both scientists and non-scientists alike.
Provided by Horizon: The EU Research & Innovation Magazine
Provided by Horizon: The EU Research & Innovation Magazine