This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

STRIVE project to study ozone, atmospheric layers among finalists for next-generation NASA satellite

May 16th, 2024 Hannah Hickey
STRIVE project to study ozone, atmospheric layers among finalists for next-generation NASA satellite
STRIVE proposes to launch a satellite that takes a sideways view of Earth's atmosphere, at what is sometimes called "Earth's limb." This photo of Earth's limb was taken Feb. 12, 2020, from the International Space Station. The central dark band is smoke from summer wildfires in Australia. The smoke layer has reached the stratosphere, at 25 to 30 kilometers elevation, lofted to record heights during the wildfires by pyrocumulus clouds. If the STRIVE satellite receives final funding, its instruments would observe these processes in much greater detail than is possible today. Credit: NASA

A project led by the University of Washington to better understand our atmosphere's complexity is a finalist for NASA's next generation of Earth-observing satellites.

STRIVE seeks to better understand the troposphere that we inhabit and the stratosphere above it, where the ozone layer is, as well as the interface where these two layers meet. That interface, about 6 miles (10 kilometers) above the surface, is where important atmospheric chemistry, circulation and climate processes occur.

In addition to STRIVE, two other teams among the finalists also include researchers from the UW.

The four teams that reached the proof-of-concept stage will spend the next year refining their proposals. NASA will then review the concept study reports and select two for implementation. Projects that reach the final stage launch into orbit in 2030 or 2032. The satellites are expected to have an initial working life of two to three years.

Lyatt Jaeglé, professor of atmospheric sciences at the UW, is principal investigator of STRIVE, or "Stratosphere Troposphere Response using Infrared Vertically-Resolved Light Explorer." The national-scale team includes partners from academia, industry and federal science labs.

The two instruments aboard the STRIVE spacecraft would observe temperature, ozone, water vapor, methane, reactive gases, smoke and other aerosol particles. They will collect 400,000 sets of observations every day—hundreds to thousands of times more than what's possible now. Instead of looking straight down at the Earth, the STRIVE instruments point at an angle to Earth's surface, allowing them to capture the atmospheric layers in greater detail.

These observations could help to monitor how the UV-absorbing ozone layer is rebuilding or deteriorating in the atmosphere; how smoke particles from volcanoes, wildfires or human emissions travel through the atmosphere and influence air quality; and how water vapor, ozone, and high-elevation clouds influence the climate system.

The STRIVE system would also support longer-range weather forecasts.

"Before a major weather event at the surface, there can be precursor signs that happen in the stratosphere," Jaeglé said. "And we see those weeks ahead of time. Observing the stratosphere and how these signals propagate down will be key to getting better weather forecasts on subseasonal to seasonal scales, so two weeks to two months in advance."

As several NASA satellites near the end of their working lifetimes, the agency is looking for future possibilities to continue their legacy of tracking Earth's changes.

"For observing the Earth, before we've had these multibillion-dollar instruments and platforms that take much longer to design and to put in operation. I think the overall idea is to move to a nimbler, faster set of satellite missions that will be designed more quickly and cost less," Jaeglé said. "NASA will still pursue the bigger missions, but these smaller missions are another tool that they're moving forward with."

STRIVE project to study ozone, atmospheric layers among finalists for next-generation NASA satellite
The STRIVE project proposes a new, high-tech satellite to observe the lower two layers of the atmosphere, between 3 and 40 miles (5 and 70 kilometers) elevation. Human and natural emissions first enter the troposphere (white) layer enveloping the Earth. The stratosphere (blue) above contains the UV-blocking ozone layer. STRIVE would track both atmospheric layers, as well as the atmospheric chemistry, circulation and climate processes happening at the interface. Credit: Lyatt Jaeglé/University of Washington

The STRIVE team will spend the next year developing a report with an in-depth engineering, cost and technical analysis.

"It's extremely exciting. This was a team effort, with many people involved," Jaeglé said. "Also a bit daunting because the next year will be a very busy one, but very exciting for how to make these concepts become a reality."

Two other projects among the four finalists also involve UW scientists

The EDGE proposal, led by the University of California, San Diego, proposes a new laser instrument to measure the height of vegetation, glaciers and polar ice sheets.

"The current state of the art for satellite laser altimetry, the satellites that measure surface height, is ICESat-2, which has six laser beams. GEDI, on the International Space Station, has eight beams. EDGE will have 40 laser beams, so the level of detail is just much, much higher," said Benjamin Smith, a research scientist at the UW Applied Physics Laboratory who's a member of the ICESat-2 science team and is an investigator on the EDGE proposal.

The EDGE satellite would collect data for the world's forests with the ability to resolve individual trees. Unlike existing satellites it would span all latitudes, from the boreal forests to the equator, surveying dense rainforests to sparser temperate woodlands. EDGE would also observe polar ice sheets and glaciers worldwide, including in the Western U.S., Alaska and the Himalayas, where populations rely on meltwater for hydropower, agriculture and household use.

"It's very nimble, so it can be off-pointed to collect very dense 3D measurements over priority areas," said David Shean, a UW assistant professor of civil and environmental engineering who is also involved with EDGE. "So for example, we could scan the entire Nisqually Glacier on Mount Rainier, and potentially many other Pacific Northwest glaciers, in a single pass."

STRIVE science team member Alex Turner is also a member of the Carbon-I proposal led by CalTech and NASA's Jet Propulsion Laboratory. Carbon-I would sample carbon dioxide and methane gases, tracking both emissions and sinks in places like the Amazon rainforest. It would have a global resolution of 300 meters, or about the length of three football fields, and could zoom in to a resolution of just 100 feet (30 meters) to investigate particular sources.

"We suspect that for methane in particular there are 'superemitters,' or a small number of sources that emit massive amounts of methane," Turner said. "From a regulatory perspective, if you can find and fix those superemitters in a timely manner, you can cut your emissions by a pretty large amount."

The other finalist proposal is ODYSEA, led by the University of California, San Diego.

"As we continue to confront our changing climate, and its impacts on humans and our environment, the need for data and scientific research could not be greater," said Nicky Fox, associate director at NASA headquarters. "These proposals will help us better prepare for the challenges we face today, and tomorrow."

Provided by University of Washington

Citation: STRIVE project to study ozone, atmospheric layers among finalists for next-generation NASA satellite (2024, May 16) retrieved 25 November 2024 from https://sciencex.com/wire-news/477332428/strive-project-to-study-ozone-atmospheric-layers-among-finalists.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.