This Science News Wire page contains a press release issued by an organization and is provided to you "as is" with little or no review from Science X staff.

New material could capture millions of tonnes of atmospheric carbon

December 20th, 2024
carbon
Credit: Pixabay/CC0 Public Domain

A new material being developed by Teesside University academics could play a major role in reducing carbon in the atmosphere at a fraction of the cost of traditional carbon dioxide removal technologies.

The material, which is being developed in collaboration with colleagues from the University of Edinburgh, has the potential to capture 3.5–5 million tonnes of CO2 in the UK and nearly 30 million tonnes of CO2 globally per year by 2030, at a cost of around £100 per tonne CO2—considerably less than current direct air capture (DAC) technologies.

Known as CalyChar, the new material is an advanced form of hydrochar, a charcoal-like material formed by using heat and water to treat organic/bio waste in a process known as hydrothermal carbonization (HTC).

By combining hydrochar with materials like amino acids and metal oxides to create CalyChar the researchers aim to overcome the material's traditional limitations in CO2 capture. In doing so, they aim to create a functionalized material that can directly capture CO2 for years once carbonized, and permanently store it as a stable carbonate.

The project will also explore the environmental impact of adding carbonized material to soils and wetlands, with expert support from the Tees River Trust, a river habitat conservation body in North East England.

Additionally, CalyChar could be used in bio-concrete and bio-cement, offering long-term carbon storage while creating jobs and driving growth in construction and agriculture.

As the urgency to limit global warming to 2°C intensifies, removing greenhouse gases from the atmosphere is more crucial than ever and was emphasized as essential in the press statements from this year's COP29 climate change conference.

Dr. Humbul Suleman, the project lead and a Senior Lecturer in Teesside University's School of Computing, Engineering & Digital Technologies, said, "CalyChar represents an exciting step forward in our efforts to combat climate change. By enhancing the ability of hydrochar to capture CO2, we can develop a more cost-effective and long-lasting solution for reducing carbon dioxide levels in our atmosphere."

Professor Ondřej Mašek from the UK Biochar Research Centre at the University of Edinburgh's School of GeoSciences, said, "The integration of advanced materials like CalyChar into climate solutions is vital if we are to meet ambitious net-zero targets.

"At the University of Edinburgh, we are excited to apply our expertise in biochar technology to help optimize the carbon capture potential of this material. Together with Teesside University, we are exploring ways to accelerate its deployment in real-world applications, from soil enrichment to sustainable construction."

Paul Rouse, the fund manager, said, "With technological synergy at its core, the project aims for amplified capabilities, drive sustainable innovation, and positively support the UK's climate goals. As the world faces the growing challenge of climate change, initiatives like CalyChar offer hope for a cleaner, greener future."

Provided by Teesside University

Citation: New material could capture millions of tonnes of atmospheric carbon (2024, December 20) retrieved 27 January 2025 from https://sciencex.com/wire-news/496160306/new-material-could-capture-millions-of-tonnes-of-atmospheric-car.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.